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Numerical Chebyshev Approximation by 
Interpolating Rationals 

By Jack Williams 

Abstract. The paper is concerned with the Chebyshev approximation of decay-type 
functions f(x) by interpolating rationals. The interpolating points are chosen to be the zeros 
of f(x). Existence, uniqueness and characterization of best approximations are first shown. 
An exchange algorithm is then described for computing the best approximation. 

1. Introduction. A common problem in various branches of physics and 
chemistry is the approximation of oscillating decay-type functions. Denote the class 
of such continuous functions by D[O, b], 0 < b < x, where f E D[O, b] is of the form 
f = B(x)g(x), g E C[O, b], g > 0 Vx E [0, b], and B(x) is the "oscillation" factor 
satisfying B(x,) = 0 for distinct x, E [0, b], v = 1, 2, * * *, R. In practice, f is fre- 
quently defined numerically so that B(x) may conveniently be chosen to be a poly- 
nomial factor constructed from the approximated zeros of f(x). 

In this paper, a numerical method is presented for computing Chebyshev ap- 
proximations of f E D[O, b] in the form of interpolating rationals. Existence, unique- 
ness and characterization of best approximations are first established; an extended 
form of the exchange algorithm is then obtained for computing the best approxima- 
tion. Some simple numerical examples are also presented. 

2. The Class of Approximating Functions. Given f E D[O, b], let V denote the 
class of approximating functions 

(2.1) F(A, x) 
B(x) x E [O. b] (2.1) F(A, x) L(A x~ 

which satisfy 
(a) L(A, x) = n askf(x), 1- 1, O~r C C[O, b], r = 2, 3, , 

where {'1, 42, * * *, } forms a Chebyshev set on [0, b]; 
(b) The parameter space P consists of the points A = (al, a2, * , a.) for which 

L(A, x) > 0, Vx E [0, b]; 
(c)p > 0. 
The form of the approximating functions is justified by the following trivial 

application of Weierstrass' theorem. 
LEMMA 2.1. Given f E. D[O, b], let V denote the above class of approximating func- 

tions where NLA, x) = r ax'- , then f is uniformly approximable by elements of V. 
The practical effectiveness of approximating functions of this form is moreover 

strongly suggested by the efficiency of approximations such as those of Hastings [3] 
for the negative exponential function. 
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Let 1.1 denote the Chebyshev norm on [0, b], then F(A*, x) E V is a best Cheby- 
shev approximation of f if Illf - F(A*, x)II | Ilf - F(A, x)II, VF(A, x) E V. 

3. Existence, Uniqueness and Characterization. 
THEOREM 3.1. Let f E D[O, b], f V , then there exists a best approximation F(A*, x) 

E V off. 
Proof. For each F(A, x) = B(x)g(x) E V, B(x) is a fixed function and satisfies 

B(x,) = 0. x, E [0, b], v = 1, 2, *., R. A contender for a best approximation is 

F(Ao, x) = B(x)/M-', where 0 < M < 2. min (g(x)). 
OSxfb 

Given small a > 0, let 0,:= {x: Ix - xI < 5}, 1 ? v ? R. and Ps = UJ-1 0, 
then since IB(x)l 5 0 in [0, b] - PF, IB(x)g(x) - M. B(x)l < IB(x)g(x)l, x e [O, b] - Ps. 
Therefore, by continuity and compactness, 3 h > 0 (not necessarily small) satisfying 

If(x) - F(AO, x)I < If(x)I - h-< IIf II - h, x E [O. b] -P&. 

Also, by continuity it is possible to choose a sufficiently small, so that 

If(x) - F(Aox)I < I1f11 - h, xe 0,, < v :' R, 

giving If - F(Ao, x)II< I f11 - h. Clearly a best approximation, if one exists, must 
lie in the parameter set 

PM:= {A: IIf - F(Ax)I|I 1f111 - h}. 

Now, there exists a sequence of parameters {A, } in PM for which 

(3.1) lim Hf - F(Ak,x)lI = inf If - F(A,x)Ij. 
k-+Cu AEP m 

For each A e PM, I IF(A, x)I I 2 h, so there exists an interval [c, d] C [0, b] for 
which IF(A, x)I > h/2, x e [c, d]. 

Hence, IL(A, x)I < {12B(x)l/h } ", x E [c, dJ, and it follows that A is bounded 
[5, p. 24]. The sequence of parameters A,, = (a(h), a2(), * , a,()) in (3.1) therefore 
satisfy Ia"k) I < M1, for all k, 1 < r ? n; so there exists a subsequence of IAt) which 
converges to A* and existence is proved. 

Characterization and uniqueness of best approximations may be established by 
applying the theory of Meinardus and Schwedt, which is conveniently presented in 
[4]. Their theory introduces the notion of asymptotic convexity and we state their 
results here as applied to real-valued functions on a compact subset X of the real 
line. 

Definition [4, p. 136]. A set V of functions F(A, x), x E X, is called asymptotically 
convex provided that for each pair of elements A and B in the parameter space P 
and each real t, 0 < t < 1, their exists A(t) E P and a continuous function g(x, t) on 
X X [0, 1] with g(x, 0) > 0 such that 

11(1 - tg(x, t))F(A, x) + tg(x, t)F(B, x) - F(A(t), x)II = o(t) as t - 0. 

Remark. Let h E C[X], which may or may not vanish at a finite number of points 
in X, then the set of functions h(x)F(A, x), F(A, x) C V, is also asymptotically convex. 

THEOREM 3.2 [4, p. 138]. Let V be asymptotically convex, then F(A*, x) E V is 
a best approximation of f E C[X] if and only if 
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mm {(f(x) - F(A*, x))(F(B, x)- F(A*, x))! < 0 

is satisfied V B E P where 

X*:= {x: If(x) - F(A*, x) I I Il - F(A*, x) I, x E XI 

Consider now the application of these results to the class of functions V of (2.1). 
From the above remark, it is sufficient to show that the functions 1/(L(A, x))' are 
asymptotically convex; this follows trivially from a simple method of Meinardus and 
Schwedt [4, p. 139]. By hypothesis, the extremal set X* in Theorem 3.2 cannot contain 
points x, E [0, b] at which B(x,) = 0. Hence, F(A*, x) E V is a best approximation 
of f E D[O, b] if and only if 

min {(g(x) - L(A*, x)-4)(L(B, x) P - L(A*, x)vP)} <O. 0, VB E P. 
sex * 

Employing the Chebyshev set hypothesis on {I, } gives 
TMaoREm 3.3. F(AW, x) E V is a best approximation of f E D[O, b] if and only if 

there exist points xe[0, b],I < rS n+ 1,withO <xI <x2< .. <x +1 b 
such that 

If(Xr)- }F(A *, x) I I fl - F(A*, x,)ll, 1 < r < n + 1, 

and 

[f(x') - F(A*, x,)] sign[f(x,)] = -(f(xr+i) - F(A*, x,+1)] sign[f(Xr+i)], 

1 < r _ n. 

In addition, we have the following useful generalization of a theorem of de la 
Vall6e Poussin (see [4, p. 82]). 

THEOREM 3.4. Let F(A*, x) be a best approximation of f E D[O, b]. Let there exist 
n + 1 points x, E [0, b], x, < x,+1, which satisfy, for a given F(A, x) E V, 

f(xr) - F(A, x,) 5 0, 1 < r < n + 1, 

and 

sign(S,) = -sign(S,+i), I < r < n, 

where S. = sign(f(x,))' [f(x,) - F(A, x,)], 1 < r < n + 1. Then, 

min jf(x,) - F(A, Xr)l < if - F(A*, X,)ll ?< Ili- F(A, x)lj. 
1 j r ~n+ 1 

The lower bound is easily established (using the Chebyshev set hypothesis) with 
the aid of a general theorem of Meinardus and Schwedt [4, p. 134]. A further useful 
result from their theorem is 

COROLLARY. Let the conditions of Theorem 3.4 be satisfied and let lf(x,) - F(A, xr)l 
= If(x+1l) -F(A, X7+1)I, 1 5 r < n, then F(A, x) is a best approximation of f on the 
point set {X, } with respect to the approximating functions V. 

Having established characterization, uniqueness follows by a slightly modified 
form (taking account of the extra zeros in B(x)) of a theorem of Meinardus and 
Schwedt [4, p. 146]. Full details are given in [6]. 

4. The Numerical Method. The above results form the basis for the application 
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of an exchange algorithm. An initial reference X?":- {x?0, x40), *, xn,0) } C [O., b] 
is selected and the kth iteration of the algorithm consists of the following two-stage 
process. 

Stage I. An approximation F(Ak, x) E V is calculated from 

(4.1) Ek(xr4) = IB(xk))| { g(x k)) - L(Ak, xk)y} = (-) k 1 ? r g n + 1. 

It follows from the corollary of Theorem 3.4 that F(A,, x) is a best approximation 
(w.r.t. V) of f on X*. 

Stage II. The extrema of the error function Ek(x) are found from which a new 
reference X(k+ 1) is selected, satisfying 

(a) Ek(x) alternates in sign on X'k+1, 

(b) min. ex(k+-) lEk(X)l >_ | X*|. 
In particular, X'k+l) will always contain a point at which IEk(x)l attains its maximum 
value on [0, b]. 

Under these conditions, Theorem 3.4 and the Corollary give I X*I < i Xk+ I (assum- 
ing F(Ak, x) is not the best approximation). It is now possible, using Theorem 3.3, 
to show that the sequence {F(Ak, x)} converges uniformly to the best approximation 
F(A*, x). The proof is exactly the same as Rice's proof [5, p. 178] for unisolvent 
functions, except of course, for the actual form of characterization used. Concerning 
the first stage of the algorithm, we have 

THEOREM 4.1. For an arbitrary reference X:= {x,}, B(x,) P5 0, 1 < r 9 n + 1, 
there exists a unique real solution of Eqs. (4.1). 

Proof. From (4.1), 
n 

(4.2) a aj1(x,) - a, (X) = 0, 1 5 r : n + 1, 

where ar(X) = {I B(xr)j/(jB(xr)jg(xr) - (-)r X)} / We consider the parameter set 
(A, X), where X E (-Pi, P2), 

Pi = min {I B(x2r)l gXx2,)}, P2 = min {I BB(X2r) g(x2r)} . 
r21 rk1 

Eliminating A from (4.2), the equations reduce to 
n+l 

F(X) = p pra,(X) = 0, 
r-l 

where, using properties of Chebyshev sets, we may choose { r} such that sign(,u,) = 
(-)r, 1 _ r ? n + 1. Now, F(X) is differentiable on (-PI, P2) and 

ar 

__ (______ IB(Xr) Ij/VI 

cx'G\) 
- 

pIB(x) II {B(Xr)|I g(x,) 
- 

(-)r 
I 

hence, F'(X) > 0, X E (-PI, P2). Since l F(X) = c- , lim_.,3 F(X) -- + c, 
there exists a unique X* E (-PI, P2) with F(X*) = 0. 

The Newton iteration was found to be completely successful for the numerical 
solution of (4.1). However, for the convergence of the exchange algorithm we must 
in practice check that at each step F(Ak, x) E V. 
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The extrema search of Stage II is slightly complicated by the extra extrema of 
E*(x) introduced by the factor IB(x)l. Thus, special care is required when searching 
for an extremum in the neighborhood of an interior zero of f(x). Here, in general, 
Ek(x) will have two extrema of the same sign and two local searches are required 
(at least for the first iteration). This is illustrated by a simple example in Fig. 1. 

l)khI 

FIGURE 1. Typical error curve, n = 3, R 2. 

Apart from this complication, the extrema search considerations are well known [2]. 
Naturally, the success of the algorithm depends to a large extent on the choice 

of the initial reference V). We found the most convenient method for dealing with 
this problem was to follow the approach of Appel [1] and obtain a linearized discrete 
least squares approximation of f(x). With f(x) = F(A, x) + -(x) we have linearized 
equations 

n ~~~~~~B(Xk)l i/V 
E a4.O(xk) + ?i(Xk) G(xk), 1 k : N, 

where n(x) = -p(f(x)/G(x))j(x) + Q(,2), N > n. The weighted least squares problem 
Ek 1 wkf(xk) can now be solved with the aid of orthogonal polynomials. It follows 
that the resulting F(A, x) yields an error function B(x) with the appropriate sign 
alternation properties. Therefore, if P(A, x) E V, it may be used to obtain X('0 and 
provide starting values for the Newton iteration of Stage I. 

5. Numerical Examples. (i) Several forms of approximations were successfully 
obtained for decay-type functions defined numerically. Typically, two examples 
f3, and f3, are given in Fig. 2 for which approximations of the form 
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x2 (a - x) x(al - Oa2 - x) 
6 8 r and - r 

(ELr-0 arx ) (E & -0 arX ) 

respectively, were found to be the most satisfactory. These produced errors of order 
10- (valid on [0, co]) and required three iterations of the exchange algorithm. 

If3P 13 S 

0 0 

I I- 0 

FiouRE 2 

(ii) f(x) = lOx2(1 - x)e 2. We considered approximations of the form 

F(A, x) = x2(1 - x)/( arx') 

and obtained the results given in Table 1 in which the effectiveness of the "least 
TABLE 1 

Approximation of f(x) = 1Ox2(1 - x)e -2 

n P min 1Eo(xj)I I1EoI 11f - F(A*, x)II 
lSjSn+2 

4 2 0.3.10-2 2.0.102 1.26.102 
4 0.4*10-3 2.0*10-3 1.25*10-3 
6 1.0*10-4 4.5* 10-4 2.92*10-4 
8 0.4* 10-4 1.5*10-4 1.01*10-4 

10 1.8*10-5 6.6*10-5 4.35.10-5 

6 2 0.2* 10-3 1.5. 10-3 8.78. 10-4 

4 1.0*10-5 4.3.10-5 2.62.10-5 
6 1.1.10-6 4.7.10-6 3.01-10-8 
8 2.2. 10-7 9.5*10-7 6.15 10-7 

10 0.6. 10-7 2.7. 10-7 1.75 10-7 

8 2 1.3*10-5 9.1l10-5 5.48*10-5 

4 1.5* 10-7 8.9. 10-7 5.54. 10-7 

6 1.0.10-8 4.9.10-8 2.98.10-8 
8 1.2*10" 5.7-10-9 3.51-10-9 

10 0.210"9 1.1i10-9 6.47-10`0 
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squares" starting values is shown by the inclusion interval of Theorem 3.4, 

min IEo(x)I < Ill - F(A*, x)II < IIEoII 
1SjSn+2 

All the approximations are valid on [0, co]. The progress of the exchange algorithm 
is shown in Table 2 for the case n = 6, p = 8 where each row corresponds to a ref- 

TABLE 2 
The Exchange Algorithm 

XI 0.1218 0.1387 0.1404 0.1404 
Xs 0.3835 0.4592 0.4487 0.4472 
X3 1.2806 1.3258 1.3342 1.3349 
X4 1.9369 2.0420 2.0602 2.0607 
X5 2.7843 2.9470 2.9557 2.9555 
x,, 3.8788 4.1124 4.1070 4.1068 
X7 5.3619 5.6805 5.6774 5.6772 
xS 7.8190 8.1613 8.1592 8.1589 

X.107 -5.6845 -6.1480 -6.1510 -6.1511 

erence point and each column to an iteration. 
(iii) f(x) =- /r(x - 3). For approximation by 

F(A, x) x(1 - x)(2 - x)(3 - x) 

(I~-o arx7) 

the value p = 4 was found to be the most satisfactory. The resulting approximations 
with errors shown in Table 3 are valid on [0, 00] and required four iterations of the 
exchange algorithm. 

TABLE 3 
Approximation of f(x) =-/r(x - 3) 

n min IE0(xj)I IIEoIl IIf -F(A*, x)jI 
lij n+2 

6 4.8.10-4 8.3 10-4 6.67 10-4 

8 1.2.10-4 3.4*10-4 2.02.10-4 

10 3.3 10-5 6.6 10-5 4.92 10-5 

12 0.9.10-5 2.1*10-5 1.48.10-5 
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